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Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment,

vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of

chemistry solvers have not delivered transformative change.

We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chem-

istry in atmospheric chemistry models. Our training data consists of one month (July 2013) of output of chemical conditions5

together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train ran-

dom forest regression models to predict the concentration of each transported species after the integrator, based on the physical

and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression

model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration

for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2).10

We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The

machine learning driven GEOS-Chem model compares well to the standard simulation. For O3, error from using the random

forests grow slowly and after 5 days the normalised mean bias (NMB), root mean square error (RMSE) and R2 are 4.2%,

35%, 0.9 respectively; after 30 days the errors increase to 13%, 67%, 0.75. The biases become largest in remote areas such as

the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition.15

Over polluted regions the model error is less than 10% and has significant fidelity in following the time series of the full model.

Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions.

For other species such as inorganic bromine species and short lived nitrogen species errors become large, with NMB, RMSE

and R2 reaching >2100% >400%, <0.1 respectively.

This proof-of-concept implementation is 85% slower than the direct integration of the differential equations but optimisation20

and software engineering would allow substantial increases in speed. We discuss potential improvements in the implementation,

some of its advantages from both a software and hardware perspective, its limitations and its applicability to operational air

quality activities.
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1 Introduction

Atmospheric chemistry is central to many environmental problems, including climate change, air quality degradation, strato-

spheric ozone loss, and ecosystem damage. Atmospheric chemistry models are important tools to understand these issues and

to formulate policy. These models solve the three dimensional system of coupled continuity equations for an ensemble of m

species c = (c1, . . . , cm)T via operation splitting of transport and local processes:5

∂ci
∂t

=−∇ · (ciU) + (Pi (c)−Li (c)ci) +Ei−Di, i ∈ [1,m] (1)

Where U denotes the wind vector, (Pi (c)−Li (c)ci) are the local chemical production and loss, Ei is the emission rate, and

Di is the deposition rate of species i. The first term of Equation 1 is the transport operator and involves no coupling between

the chemical species. The second term is the chemical operator, which connects the chemical species through a system of

simultaneous ordinary differential equations (ODE) that describe the chemical production and loss:10

dci
dt

= (Pi (c)−Li (c)ci) = fi (c, t) (2)

The numerical solution of Equation 2 is computationally expensive as the equations are numerically stiff and require implicit

integration schemes such as Rosenbrock solvers to guarantee numerical stability (Sandu et al., 1997a, b). As a consequence,

50− 90% of the computational cost of an atmospheric chemistry model such as GEOS-Chem can be spent on the integration

of the chemical kinetics (Long et al., 2015; Nielsen et al., 2017; Eastham et al., 2018; Hu et al., 2018).15

Some efforts have been made to speed up the solution of these equations through various methods. The chemical mechanism

can be simplified e.g. through dynamical reduction of the chemical mechanism (adaptive solvers) (Santillana et al., 2010; Car-

iolle et al., 2017), separation of slow and fast species (Young and Boris, 1977), quasi-steady state approximation (Whitehouse

et al., 2004a), by using species lumping schemes (Whitehouse et al., 2004b) or by approximation of the chemical kinetics using

polynomial functions (Turányi, 1994). However, this approaches have not been transformative in their reduction of time spent20

on chemistry.

Machine learning is becoming increasingly popular within the natural sciences (Mjolsness and DeCoste, 2001) and specifi-

cally within the Earth system sciences to emulate computationally demanding physical processes (notably convection) (Krasnopol-

sky et al., 2005, 2010; Krasnopolsky, 2007; Jiang et al., 2018; Gentine et al., 2018; Brenowitz and Bretherton, 2018). Machine

learning has also been used to replace the chemical integrator for other chemical systems such as those found in combustion25

and been shown to be faster than solving the ODEs (Blasco et al., 1998; Porumbel et al., 2014). Recently, Kelp et al. (2018)

found order-of-magnitude speedups for an atmospheric chemistry model using a neural network emulator, albeit their solution

suffers from quick error propagation when applied over multiple time steps.

Here we explore whether the chemical integration step within the GEOS-Chem atmospheric chemistry model can be em-

ulated by using a machine learning algorithm. Thus we use the numerical solution of the GEOS-Chem chemistry model to30

produce a training data set of output before and after the chemical integrator (Sections 2.1 and 2.2), train a machine learning

algorithm to emulate this integration (Sections 2.3, 2.4 and 2.5) and then describe and assess the trained machine learning

predictors (Sections 2.6, 2.7, 2.8 and 2.9). Section 3 describes the results of using the machine learning predictors to replace
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the chemical integrator in GEOS-Chem. In Section 4 we discuss potential future directions for the uses of this methodology

and in Section 5 we draw some conclusions.

2 Methods

2.1 Chemistry Transport Model description

All model simulations were performed using the NASA Goddard Earth Observing System Model, version 5 (GEOS-5) with5

version 10 of the GEOS-Chem chemistry embedded (Long et al., 2015; Hu et al., 2018). GEOS-Chem (http://geos-chem.org) is

an open-source global model of atmospheric chemistry that is used for a wide range of science and operational applications. The

code is freely available through an open license (http://acmg.seas.harvard.edu/geos/geos_licensing.html). Simulations were

performed on the Discover supercomputing cluster of the NASA Center for Climate Simulation (https://www.nccs.nasa.gov/

services/discover) at cube sphere C48 horizontal resolution, roughly equivalent to 200km×200km. The vertical grid comprises10

of 72 hybrid-sigma vertical levels extending up to 0.01hPa. The model uses an internal dynamic and chemical time step of 15

minutes.

The model chemistry scheme includes detailed HOx-NOx-BrOx-VOC-ozone tropospheric chemistry as originally described

by Bey et al. (2001), with addition of halogen chemistry by Parrella et al. (2012) plus updates to isoprene oxidation as described

by Mao et al. (2013). Photolysis rates are computed online by GEOS-Chem using the Fast-JX code of Bian and Prather (2002)15

as implemented in GEOS-Chem by Mao et al. (2010) and Eastham et al. (2014). The gas-phase mechanism comprises of

150 chemical species and 401 reactions and is solved using the Kinetic Pre-Processor KPP Rosenbrock solver (Sandu and

Sander, 2006). There are 99 (very) short-lived species which are not transported and we seek to emulate the evolution of the

51 transported species.

2.2 Training data20

To produce our training data set we run the model for one month (July 2013). Each hour we output the 3-dimensional instan-

taneous concentrations of each transported species immediately before and after chemical integration. In addition, we output

a suite of environmental variables that are known to impact chemistry: temperature, pressure, relative humidity, air density,

cosine of the solar zenith angle, cloud liquid water, cloud ice water, and photolysis rates. We restrict our analysis to the tro-

posphere since this is the focus of this work. Each training sample consists of 126 input "features": the 51 transported species25

concentrations, 68 photolysis rates, and the 7 meteorological variables. Each hour produces a total of 327,600(144×91×25)

samples, and so an overall data set of 2.4× 108 (144× 91× 25× 31× 24) samples is produced over the month. We withhold

a randomly selected 10% of the samples to act as validation data while the remaining samples act as training data.
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2.3 Random forest

We use the random forest regression (RFR) (Breiman, 2001) algorithm to emulate the integration of atmospheric chemistry.

This is a commonly used and conceptually simple, supervised learning algorithm that uses the mean value from an ensemble

(or forest) of decision trees, each trained on a different part of the training data, to generate a prediction. The RFR algorithm

is less prone to over-fitting and produces predictions that are more stable than a single decision tree. Random forests are5

widely used since they are relatively simple to apply, suitable for both classification and regression problems, do not require

data transformation, and are less susceptible to irrelevant or highly correlated input features. In addition, random forests allow

for easy evaluation of the factors controlling the prediction, the decision structure and the relative importance of each input

variable. Analysing these features can offer valuable insights into the control factors of the underlying mechanism, as discussed

later. We discuss the potential for other algorithms in Section 4.10

2.4 Implementation

For each of the 51 chemical species transported in the model, we generate a separate random forest predictor, consisting of

30 trees with a maximum of 10,000 leaves (prediction values) per tree. Each tree is trained on a different sub-sample of the

training data by randomly selecting 10% of the training sample. In order to balance the training samples across the full range

of model values, the training samples are evenly drawn from each decile of the predictor variable.15

The Python software package scikit-learn (http://scikit-learn.org/stable/) (Pedregosa et al., 2011) was used to build the

forests. All forests were then embedded as a Fortran 90 subroutine into the GEOS-Chem chemistry module. Using an ad-hoc

approach, the model loads all tree nodes into local memory and crawls each tree serially. No attempts were made to optimise

the prediction algorithm beyond the existing Message Passing Interface grid-domain splitting.

2.5 Choice of predictor20

We find that the quality of the RFR model (as implemented back into the GEOS-Chem model) depends critically on the choice

of the predictor. Most simplistically, we could predict the concentration of a species after the integration step. However, many

of the species in the model are log-normally distributed in which case predicting the logarithm of the concentration may provide

a more accurate solution; we could also predict the change in the concentration after the integrator, the fractional change in

the concentration, the logarithm of the fractional change, etc. After some trial and error, and based on chemical considerations,25

we choose two types of prediction: the change in concentration after going through the integrator, and the concentration after

the integrator. We describe the first as the ’tendency’. This fits with the differential equation perspective for chemistry given

in Equation 2. However, if we incorporate only this approach we find that errors rapidly accrue. This is due to errors in the

prediction of short lived species such as NO, NO3, Br, etc. For these compounds, concentrations can vary by many orders of

magnitude over a day and even small errors in the tendencies build up quickly when they are included in the full model. For30

these short lived compounds, we use a second type of prediction where the RFR predicts the concentration of the compound

after the integrator. We describe this as a prediction of the ’concentration’. From a chemical perspective, this is similar to
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placing the species into steady-state, where the concentration after the integrator does not depend on the initial concentration

but is a function of the production (P ) and loss rate (L · c) such that c= P/L. We imitate this process by explicitly removing

the predictor species from the input features which we find improves performance.

The choice between predicting the tendency or the concentration is based on the standard deviation of the ratio of the

concentration after chemistry to the concentration before chemistry: σ(c/c0) in the training data. This ratio is relatively stable5

and close to 1.00 for long lived species but highly variable for short lived species. Based on trial and error, we use a standard

deviation threshold of 0.1 to distinguish between long lived species (σ < 0.1) and short lived species (σ ≥ 0.1). Tables 1 and 2

list the prediction type used for each species. We discuss the treatment of NO and NO2 species in Section 2.7.

2.6 Feature importance

The importance of different input variables (features) for making a prediction of O3 tendency are shown in Figure 1 (left10

panel). The importance metric is the fraction of decisions in the forest that are made using a particular feature. Consistent with

our understanding of atmospheric chemistry features such as NO, formaldehyde (CH2O), the cosine of the solar zenith angle

(’SUNCOS’), bromine species and nitrogen reservoirs all appear within the top 20. From a chemical perspective, these features

make sense given the sources and sinks of O3.

The middle panel of Figure 1 shows the performance of the O3 tendency predictor against the validation data. The predictor15

is not perfect, with a R2 of 0.95, and a NRMSE of 23%, but it is unbiased with a NMB of -0.13% (descriptions of the metrics

can be found in Section 2.8). However, this comparison is somewhat misleading as the calculation to be performed by the

chemistry model is to add the tendency to the concentration before the integrator. The right panel compares the concentration

after the integrator from the training data with sum of the tendency predictor and the concentration before the integrator. Here

the comparison is much better, with this approach able to predict the concentration of O3 after the integrator almost perfectly.20

2.7 Prediction of NOx

For NO and NO2 we find that the random forest has difficulties predicting the species concentrations independent of each

other, which can result in unrealistically large changes of total NOx (NOx ≡NO + NO2). Given the central role of NOx for

tropospheric chemistry, a quick deterioration of model performance occurs (see Section 3.1). For these species we thus adopt

a different methodology: instead of making predictions for the species individually, we predict the tendency for a family25

compromising their sum (NO + NO2), and also predict the ratio of NO to NOx. NO2 is then calculated by subtracting NO from

NOx. Thus the overall number of forests that needs to be calculated does not change. This has the advantage of treating NOx

as a long-lived family "species" but allows the NO and NO2 concentration to still rapidly vary.

Figure 2 shows the feature importance and the comparison with the validation data for the prediction of the NOx family

tendency. The features make chemical sense, with NO2 and NO playing important roles, but also acetaldehyde (a tracer of30

PAN chemistry) and HNO2, a short lived nitrogen species. The importance of SO2 may reflect heterogeneous N2O5 chemistry.

As shown in the middle panel of Figure 2, the NOx predictor gives the ’true’ NOx tendencies from the validation data with an

R2 of 0.96, NRMSE of 21% and NMB of 0.28%. While the NRMSE is relatively high, we find that the ability of the model to

5

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-229
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 4 October 2018
c© Author(s) 2018. CC BY 4.0 License.



produce an essentially unbiased prediction is critical for long-term stability of the model. As for O3, the skill scores become

almost perfect when adding the tendency perturbations to the concentration before integration (right panel).

Figure 3 shows the feature importance and performance of the predictor for the ratio of NO to NOx. Again the features make

chemical sense with the top three features (photolysis, temperature and O3) being those necessary to calculate the NO to NO2

ratio from the well known Leighton relationship (Leighton, 1961). The performance of the NO to NOx ratio predictor is very5

good, and the prediction is also unbiased.

2.8 Evaluation metrics

We now move to a systematic evaluation of the performance of the RFR models, both against the validation data and when

implemented back into the GEOS-Chem model. We use three standard statistical metrics for this comparison. For each species

c, we compute the Pearson correlation coefficent (R2):10

R2 =
(
∑N

i=1(ci− c)(ĉi− ĉ))2∑N
i=1(ci− c)2(ĉi− ĉ)2

(3)

the root mean square error normalised by the standard deviation σ (NRMSE):

NRMSE =

√
1
N

∑N
i=1 (ĉi− ci)2

σ (c)
, (4)

and the normalized mean bias (NMB):

NMB =
∑N

i=1 (ĉi− ci)∑N
i=1 (ci)

(5)15

where ĉ denotes the concentration predicted by the RFR model, c is the concentration calculated by GEOS-Chem, and N are

the total number of grid cells.

2.9 Performance against the validation data

Ten percent of the training data was withheld to form a validation dataset. Columns ’V’ in Tables 1 and 2 provide an evaluation

of each predictor against the validation data for the three metrics discussed in Section 2.8. For most species the RFR predictors20

do a good job of prediction: R2 values are greater than 0.90 for 35 of the 51 species, NRMSE are below 20% for 21 species,

and NMB are below 1% for 29 species, respectively. Those species which do less well are typically those which are shorter

lived, such as inorganic bromine species or some nitrogen species (NO3, N2O5). The performance of NO and NO2 after

implementing the NOx family and ratio methodology is consistent with other key species.

Although we do not have a perfect methodology for predicting some species we believe that it does provide a useful approach25

to predicting the concentration of the transported species after the chemical integrator. We now test this methodology when the

RFR predictors are implemented back into GEOS-Chem.
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3 Long-term simulation using the random forest model

To test the practical prediction skill of the RFR models, we run four simulations of GEOS-5 with GEOS-Chem for the same

month (July) but a different year (2014) than was used to train the RFR model. The first is a standard simulation where we

use the standard GEOS-Chem integrator; the second is a simulation where we replace the chemical integrator with the RFR

predictors described earlier (with the family treatment of NOx); the third uses the RFR predictors but directly predicts the5

NO and NO2 concentrations instead of NOx; the fourth has no tropospheric chemistry and the model just transports, emits

and deposits species. For all cases the stratospheric chemistry uses a linearized chemistry scheme (Murray et al., 2012). We

evaluate the performance of model simulations 2,3 and 4 against model 1. We first focus on the statistical evaluation of the best

RFR model configuration (model 2) for all species and then turn our attention to the specific performance of surface O3 and

NO2, two critical air pollutants.10

3.1 Statistics

Tables 1 and 2 summarise the prediction skill of the random forest regression model (using the NOx family method) for all

51 species plus NOx. We sample the whole tropospheric domain at three time steps during the 2014 test simulation: after 1

simulation day (’D1’), after 5 simulation days (’D5’), and after 30 simulation days (’D30’). For each time slice, we calculate a

number of metrics (Section 2.8) for the RFR model performance.15

The model with the RFR predictors shows good skill (R2 > 0.8, RMSE < 50%, NMB < 30%) for key long-lived species such

as O3, CO, NOx, SO2, SO2−
4 , and for most VOCs, even after 30 days of integration. The NRMSEs can build up to relatively

large numbers over the period of the simulation, with O3 getting up to 67% after 30 days, but the mean bias remains relatively

low at 13%. For the stability of the simulation, it is more important to have an overall unbiased estimation, as this prevents

systematic buildups / drawdowns in concentrations that can eventually render the model unstable. For 36 of the 52 species,20

including NOx, the NMB remains below 30% at all times. The model has more difficulties with shorter lived species such

as the inorganic bromine species (e.g. atomic bromine, bromine nitrate) and nitrogen species such as NO3 and N2O5. These

species show poor performance with R2 values below 0.1 even after the first day.

The hourly evolution of the metrics for O3 over a 30-day simulation are shown in Figure 4. We show here the performance

of the model with the family treatment of NOx (solid line), with separate NO and NO2 (dashed line), and with no chemistry25

at all (dotted line). For all metrics, the random forest simulation predicting family treatment of NOx performs better than a

simulation predicting NO and NO2 independently and for a simulation with no chemistry. We use the latter as a minimum

threshold to compare the RFR methodology. The metrics of the RFR model decrease over the course of the first 15 simulation

days (1440 integration steps) but stabilise with a R2 of 0.8, a NRMSE of 65% and a NMB of less than 15%. The simulation

with the chemistry switched off degrades rapidly, highlighting the comparative skill of the RFR model to predict ozone over30

the entire 30 day period. The simulation with NO and NO2 predicted independently from each other closely follows the NOx

family simulation during the first 2-3 days but quickly deteriorates afterwards, as the compounding effect of NO and NO2

prediction errors leads to an accelerated degradation of model performance.
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Although there are some obvious issues associated with the RFR simulation, it is evident that for many applications, the

model has sufficient fidelity to be useful. We now focus on the model’s ability to simulate surface O3 and NO2, two important

air pollutants.

3.2 Surface concentrations of O3 and NOx

Figure 5 compares concentration maps of surface O3 at 00 UTC calculated by the full chemistry model (upper rows), the5

RFR model (middle rows) and their ratio (bottom rows) after 1 day, 5 days, 10 days and 30 days of simulation. After one day

there are only small differences between the full model and the RFR model. However, these differences grow over the period

of the simulation as errors accumulate. By the time the model has been run for 10 days the model has become significantly

biased over clean background regions, in particular over the Pacific Ocean. The differences between the reference model and

the RFR simulation grow more slowly after 10 days (see also Figure 4), resulting in the model differences between day 10 and10

day 30 being small relative to the difference between day 1 and day 10. It appears that the RFR model finds a new ’chemical

equilibrium’ for surface O3 on the timescale of a few days. This new equilibrium overestimates O3 in clean background regions

such as the tropical Pacific and underestimates O3 in the Arctic.

Figure 6 similarly compares concentration maps of surface NOx. Reflecting the shorter lifetime of NOx, the errors here

grow more quickly compared to O3 but level off after 5 days as a new chemical equilibrium is reached. The RFR model shows15

large differences compared to the GEOS-Chem model in regions where NOx concentrations are low and remote from recent

emission, with NOx being highly overestimated in the tropics and underestimated at the poles. This pattern is highly consistent

with the ones seen for O3, suggesting that the relative change of NOx drives the change of O3, as would also be the case in a

full chemistry model.

Figures 7 and 8 show time series of O3 and NOx mixing ratios at four polluted locations (New York, Delhi, London and20

Beijing) as generated by the full chemistry model (black line), the RFR model (red), and the model with no chemistry (blue).

The RFR model closely follows the full model at these locations and captures the concentrations patterns with an accuracy of

10-20%. Especially for NOx it is hard to distinguish the RFR model from the full model whereas the simulation without any

chemistry shows a distinctly different pattern. These differences are significantly less than one would expect from running two

different chemistry models for the same period (e.g. Stevenson et al., 2006; Cooper et al., 2014; Young et al., 2018; Brasseur25

et al., 2018). Events such as that in Beijing on day 20 are well simulated by the RFR model which is able to follow the full

model, whereas the simulation without chemistry follows a distinctly different path.

Although our analysis has not provided a complete analysis of the RFR model performance, we have shown that it is capable

of providing a simulation of many key facets of the atmospheric chemistry system (O3, NOx) on the timescale of days to

weeks. We now discuss future routes to improve the system and some applications.30
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4 Discussion

We have shown that a machine learning algorithm, here random forest regression, can simulate the general features of the

chemical integrator used to represent the chemistry scheme in an atmospheric chemistry model. This represents the first stage

in producing a fully practical methodology. Here we will discuss some of the issues we have found with our approach, potential

solutions, some limitations and where we think a machine learning model could provide useful applications.5

4.1 Speed, algorithms and hardware

The current RFR implementation takes about twice as long (85%) to solve the chemistry than the currently implemented

integrator approach. While the evaluation of a single tree is fast (average execution time = 1.7× 10−3 ms on the Discover

computer system), calculating them all for every forest and for every transported species (30× 51) in series results in a total

average execution time of 2.6ms; 85% slower than the average execution time of 1.4ms using the standard model integrator.10

We emphasise that this implementation is a proof of concept. Little work has been undertaken to optimise the algorithm

parameters (reducing the number of number of leaves per tree, or the number of trees for example) or the Fortran90 imple-

mentation of the forests. For example, random forest have relatively large memory footprints that scale linearly with number

of forests and trees. Efficient access of these data through optimal co-location of related information (e.g. grouping memory by

branches) could dramatically reduce CPU register loading costs. Thus we believe that different software structures, algorithms15

and memory management may allow significant increases in the speed achieved.

A fundamental attractiveness of the random forest algorithm is its almost perfect parallel nature: the nodes of all trees (and

across all forests) solely depend on the initial values of the input features, and thus can be evaluated independently. This would

readily allow parallelisation of the chemistry operator, which has up to this point not been possible. This may allow other

hardware paradigms (e.g. Graphical Processing Units) to be exploited in calculating the chemistry.20

We have implemented the replacement for the chemical integrator using a random forest regression algorithm. Our choice

here was based on the conceptual ease of the algorithm. However, other algorithms are capable of full-filling the same function.

Neural networks have found extensive use in many Earth System applications (e.g. Krasnopolsky et al., 2010; Brenowitz and

Bretherton, 2018). Gradient boosted tree based algorithms such as XGboost (Chen and Guestrin, 2016) may also be useful. A

number of different algorithms need to be tested and explored for both speed and accuracy before a best case algorithm can25

been found.

4.2 Training data

We have trained the random forest regression models on a single month of data. For a more general system the models will

need to be trained with a more temporally extensive data set. Models are, however, able to generate large volumes of data. A

year’s worth of training data over the full extent of the model’s atmosphere would result in a potentially very large ( 2× 1010)30

training data set. Applying this methodology to spatial scales relevant to air quality applications (on the order of 10 km) will

result in even larger data sets ( 1013). However, not all items from the training data are of equal value. Much of the atmosphere
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is made up of chemically similar air masses (e.g. central Pacific, remote free troposphere etc.) which are highly represented in

the training data but are not very variable. Most of the interest from an air quality perspective lies in small regions of intense

chemistry. If a way can be found to reduce the complete training data set such that the sub-sample represents a statistical

description of the full data, the amount of training data can be significantly reduced and so the time taken to train the system

reduced.5

The features being used to train the predictors should also be considered. The current selection reflects an initial estimate

of the appropriate features. It is evident that different and potentially better choices could be made. For example, we have

included all photolysis rates, but these correlate very strongly and so a greatly reduced number of inputs here (potentially

from a principal components analysis) could achieve the same results but with a reduced number of features. Including other

parameters such as the concentrations of the aerosol tracers may also improve the simulation.10

4.3 Conservation laws and error checking

One of the fundamental laws of chemistry is conservation of atoms. One interpretation of that has been applied here to the

prediction of the change in NOx together with predictions for NO:NOx. Since the concentration of NOx changes much more

slowly than the change in concentration of either NO or NO2, this approach attempts to improve the prediction of these short

lived nitrogen species, which are difficult to predict. Our results show that this indeed increases the stability of the system, and15

it represents a first step towards ensuring conservation of atoms in machine learning based chemistry models. A larger nitrogen

family (NO, NO2,NO3, N2O5, HONO, HO2NO2, etc.) might increase stability further, as could other chemical families such

as BrOx, which showed significant errors both compared to the validation data and the evaluation of the chemistry model.

The solution space of a chemistry model is constrained by mass-balance requirements, and chemical concentrations tend20

to mean-revert to the equilibrium concentration implied by the chemical boundary conditions (emissions, deposition rates,

sunlight intensity, etc.). A successful machine learning method should have the same qualities in order to prevent run-away

errors that can arise from systematic model errors, e.g. if the model constantly over/under-predicts certain species or if it

violates conservation of mass-balance. Because each model prediction feeds into the next one, small errors compound and

quickly lead to systematic model errors. Possible solutions for this involve prediction across multiple time steps, which have25

shown to yield more stable solutions for physical systems (Brenowitz and Bretherton, 2018), or the use of additional constraints

that measure the connectivity between chemical species.

4.4 Possible implementations

The ability to represent the atmospheric chemistry occurring within a grid-box as a set of individual machine learning models

rather than as one simultaneous integration has numerous advantages. In locations where the impact of a molecule is known30

to be insignificant (for example isoprene over the polar regions or DMS over the deserts), the differential equation approach

continues to solves the chemistry for all species. However, with this machine learning methodology, there would be no need to

call the machine learning algorithm for a species with a concentration below a certain threshold. The chemistry could continue
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without updating the change in the concentration of these species. Thus it would be relatively easy to implement a dynamical

chemistry approach which would evaluate whether the concentration of a compound needs to be updated or not. If it did, the

machine learning algorithm could be run, if it didn’t the concentration would remain untouched. This approach could reduce

the computational burden of atmospheric chemistry yet further.

The machine learning methodology could also be implemented to work seamlessly with the integrator. For example, the full5

numerical integrator can be used over regions of particular interest (populated areas for an air quality model, or a research

domain for a research model), while outside of these regions (over the ocean or in the free troposphere for an air quality model,

or outside of the research domain for a research model) the machine learning could be used used. This would provide a ’best

of both worlds’ approach which provides higher chemical accuracy where necessary and faster but lower accuracy solutions

where appropriate.10

4.5 Limitations

This is the first step in constructing a new methodology for the representation of chemistry in atmospheric models. There

are a number of limitations that should be explored in future work. Firstly, the machine learning methodology can only be

applied within the range of the data used for the training. Applying the algorithm outside of this range would likely lead

to inaccurate results. For example, the model here has been trained for the present day environment. Although the training15

data set has seen a range of atmospheric conditions, it has only seen a limited range of methane (CH4) concentrations or

temperatures. Thus applying the model to the pre-industrial or the future, where the CH4 concentration and temperature may

be significantly different than the present day, would likely result in errors. Similarly, exploring scenarios where the emissions

into the atmosphere change significantly (for example significant changes in NOx to VOC ratios) again will likely ask the

model to make predictions outside of the range of training data. The same limitations also apply to model resolution: due to20

the non-linear nature of chemistry, the numerical solution of chemical kinetics is resolution-dependent, and a machine learning

algorithm may not capture this. Thus, care should be taken when applying these approaches outside of the range of the training

data.

4.6 Potential Uses

Despite the limitations discussed here, there are a number of potential exciting applications for this kind of methodologies. The25

meteorological community has successfully exploited ensembles of predictions to explore uncertainties in weather forecasting

(e.g. Molteni et al., 1996). However, air quality forecasting has not been able to explore this tool due to the computational bur-

den involved. Using a computationally cheap machine learning approach, air quality simulations could become affordable for

inclusion into these meteorological ensembles. Ideally, the primary ensemble member would include the fully integrated nu-

merical solution of the differential equations, while secondary members use the machine learning emulator. Data-assimilation30

would be applied to determine the initial state for all models and then the ensembles could be used for probabilistic air quality

forecasting. This application is also less sensitive to long-term numerical instability of the machine learning model as the model

is only used to produce 5-10 day forecasts, with initial conditions taken from the full chemistry model for every new forecast.
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The data assimilation methodology itself could benefit from a machine learning representation of atmospheric chemistry.

Data assimilation is often computationally intense, requiring the calculation of the adjoint of the model or running large

numbers of ensemble simulations (Carmichael et al., 2008; Sandu and Chai, 2011; Inness et al., 2015; Bocquet et al., 2015).

The ability to run these calculations faster would offer significant advantages.

5 Conclusions5

We have shown that a suitably trained machine learning based approach can replace the integration step within an atmospheric

chemistry model run on the timescale of days to weeks. The application of some chemical intuition, by which we separate

long lived from short lived species, and a basic application of conservation of atoms to the NOx family, leads to significant

improvements of model performance. The machine learning implementation is slower than the current model, but very little

optimisation and software development has been thus far applied to the code.10

Methodologies similar to this may offer the potential to accelerate the calculation of chemistry for some atmospheric chem-

istry applications such as ensembles of air quality forecasts and data assimilation. Future work on both the algorithm and the

methodology is necessary to produce a useful solution but this first step shows promise.
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Figure 1. Characteristics of random forest trained to predict tendencies of O3 due to chemistry. (Left) Importance of input variables (features)

for random forests trained to predict tendency of ozone due to chemistry. Shown are the 20 most important features for the entire random

forest, as averaged over all 30 decision trees. The black bars indicate the standard deviation for each feature across the 30 decision trees.

Validation of random forest prediction skill for ozone; (Middle) Comparison of ozone tendency validation data (x-axis) vs. predicted values

(y-axis). Number of validation points (N), correlation coefficient (R2), normalized root mean square error (NRMSE) and normalized mean

bias (NMB) are given in the inset; (Right) Same validation but with tendency added to the concentration before integration.

Figure 2. As Figure 1 but for NOx (NO + NO2).
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Figure 3. Characteristics of random forest trained to predict the NO/NOx ratio after chemistry. (Left) 20 most important features for the

NO/NOx random forest, as averaged over all 30 decision trees. The black bars indicate the standard deviation of the feature importances;

(Right) Comparison of predicted NO/NOx ratios (y-axis) vs. true NO/NOx ratios (x-axis) for the validation data (not used for training).

Number of validation points (N), correlation coefficient (R2), normalized root mean square error (NRMSE) and normalized mean bias

(NMB) are given in the inset.
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Figure 4. 30-day evolution of R2 (left), NRMSE (middle), and NMB (right) for three different model simulations of O3 run for July 2014

compared to full GEOS-Chem simulation. Solid line represents the standard RFR simulation using the family prediction of NOx. Dashed line

uses RFR predictors for NO and NO2 individually (this simulation becomes unstable after 23 days). The dotted line represents a simulation

with no chemistry. Grey line on the right hand plot indicates a 0 value.
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Figure 5. Concentration maps of surface O3 mixing ratio after 1 simulation day (column 1), 5 simulation days (column 2), 10 simulation

days (column 3), and 30 simulation days (column 4), as calculated by the full GEOS-Chem model (row 1) and the standard RFR model with

the NOx family treatment (row 2). Row 3 shows the percentage difference between the RFR simulation and GEOS-Chem (GC).
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Figure 6. Concentration maps of surface NOx (NO + NO2) after 1 simulation day (column 1), 5 simulation days (column 2), 10 simulation

days (column 3), and 30 simulation days (column 4), as calculated by the full GEOS-Chem model (row 1) and the standard RFR model with

the NOx family treatment (row 2). Row 3 shows the relative difference between the RFR simulation and GEOS-Chem (GC).
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Figure 7. Comparison of surface concentration of O3 at four locations (New York, Delhi, London and Bejing) for the GEOS-Chem reference

simulation (black), the RFR model with the NO3 family treatment (red) and a simulation with no chemistry (blue).
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